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ABSTRACT
Over the past few years, the machine learning community has given
increasing attention to chemical reaction prediction and retrosyn-
thesis. Despite impressive achievements, the existing datasets in
this field have gradually become the bottleneck of current research
— the limitation of dataset size and the lack of reaction condition
information hinder the practicability of the current methods. In
this study, we construct an information-enriched chemical reaction
dataset calledUSPTO-LLM, with the help of large language models
(LLMs). This dataset comprises over 247K chemical reactions ex-
tracted from the patent documents of USPTO (United States Patent
and Trademark Office), encompassing abundant information on
reaction conditions. We employ large language models to expe-
dite the data collection procedures automatically with a reliable
quality control process. Experiments show that USPTO-LLM helps
pre-train the existing retrosynthesis methods and the condition
information in the dataset helps improve the model performance.
The dataset is open-sourced at https://zenodo.org/records/14396156
and the annotation code is open-sourced at https://github.com/
GONGSHUKAI/USPTO_LLM.

CCS CONCEPTS
• Applied computing→ Chemistry; • Information systems
→ Data cleaning; • Computing methodologies→ Spatial and
physical reasoning.

KEYWORDS
Chemical reaction data, retrosynthesis, large language model

ACM Reference Format:
Shen Yuan, Shukai Gong, and Hongteng Xu. 2018. USPTO-LLM: A Large
Language Model-Assisted Information-enriched Chemical Reaction Dataset.
In Proceedings of Make sure to enter the correct conference title from your
rights confirmation emai (Conference acronym ’XX). ACM, New York, NY,
USA, 4 pages. https://doi.org/XXXXXXX.XXXXXXX

∗Shen Yuan and Shukai Gong have equal contributions to this work. They are listed in
alphabetical order of their first names.
†The corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
The study of chemical reactions plays a central role in scientific
discovery, which impacts many fields, such as chemical engineer-
ing [11], drug design [4], and material discovery [1]. The traditional
research paradigm of chemical reactions heavily relies on costly
and time-consuming wet lab trials and empirical expert knowledge.
In the past few years, the development of artificial intelligence has
provided a promising solution to accelerate the study of chemical
reactions. In particular, many learning-based methods have been
proposed for chemical reaction prediction [13] and retrosynthe-
sis [5, 8], which show potential to predict chemical products and
their reaction routes efficiently.

However, the learning-based methods in this field have encoun-
tered limitations and bottlenecks caused by the scarcity of high-
quality data. Specifically, most existing chemical reaction datasets
only focus on the reactants and products of reaction routes while
ignoring the reaction conditions, e.g., catalysts, solvents, tempera-
ture, reaction duration, and so on [8]. The scarcity of information-
enriched chemical reaction data leads to sub-optimal performance
of learning-based methods, which prevents them from having prac-
tical applications. Take retrosynthesis (i.e., predicting chemical reac-
tion routes based on products) as an example. The most commonly
used open-source retrosynthesis dataset, USPTO-50K [12], only
contains one-step chemical reactions, and only a limited number of
reactions contain catalysts. As a result, the models [2, 7, 16, 21–23]
trained on USPTO-50K cannot predict reactants associated with
reaction conditions and thus are inapplicable in practice. In ad-
dition, given textual reaction descriptions, manually annotating
complicated reaction conditions for a huge number of chemical re-
actions is expensive and time-consuming. Therefore, an automatic
and reliable data construction method is required.

In this study, we construct a new information-enriched chem-
ical reaction dataset called USPTO-LLM to overcome the above
challenges. As illustrated in Figure 1, we leverage a large language
model (LLM) to process the patent documents of the USPTO (the
United States Patent and Trademark Office). Taking a patent doc-
ument and a sophisticated prompt as input, LLM helps 𝑖) extract
chemical reactions with reactants, products, and corresponding
reaction conditions and 𝑖𝑖) standardize the format of each entity. A
two-round quality control process is applied to double-check the
validity of the LLM’s output and increase the success rate of the
data construction. In this process, we verify whether the output
can be formulated as a heterogeneous directed graph (HDG) and
call the LLM again to process those invalid cases further, using the
reasons for the invalidation as prompts. We test various LLMs to
demonstrate the feasibility and universality of our data construction

1
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LLM

USPTO Reaction Descriptions 
To a solution of 4-(4-amino-3-chlorophenoxy)-6-iodo-N-methylpyrimidine-5-amine 
(3.0 g, 7.97 mmol) ……… 4-(4-amino-3-chlorophenoxy)-6-(3-methoxyprop-1-yn-1-
yl)-N-methylpyrimidine-5-amine (1.49 g, 59%) as a brown liquid.

Fixed Prompt 
1. Standardized Output Format     2. Rules of Output     3. Typical Examples

PRODUCT: P1: 4-(4-amino-3-chlorophenoxy)-6-(3-
methoxyprop-1-yn-1-yl)-N-methylpyrimidine-5-amine;

REACTANTs:  R2triethylamine;  R3methylpropalgylether.
R14-(4-amino-3-chlorophenoxy)-6-iodo-N-methylpyrimidine-5-amine; 

SOLVENT:
S1: 4-nitrofluorobenzene.

CATALYST:
C1: dichlorobis palladium; C2: copper iodide.

DURATION:
T1: 30 min; T2: 1 hr.

TEMPERATURE:
E1: room temperature; E2: 60° C.

R1
R2

R3

M1 P1
S1 C1

E1T1

C2
E2T2

Extraction & 
Standardization

API Calls

Valid Heterogenous 
Directed Graph of 
Chemical Reaction

Invalid Graphs with 
Potential Reasons

Rule-based 
Validation

Figure 1: An illustration of our data construction method.

method. By using chemistry software such as RDKit [9] and RXN-
Mapper [19], we ensure the correctness of USPTO-LLM, including
the validity of chemical molecules and reaction conditions.

As a large-scale chemical reaction dataset with reaction con-
ditions, USPTO-LLM helps develop new reaction prediction and
retrosynthesis methods. Experiments demonstrate that pretrain-
ing on USPTO-LLM and incorporating reaction conditions from
USPTO-LLM can improve the performance in existing retrosynthe-
sis models. In summary, we release the dataset associated with its
annotation tool, and we hope that this dataset can boost the devel-
opment of artificial intelligence techniques for scientific discovery.

2 RELATEDWORK
As the most commonly-used chemical reaction dataset, the original
USPTO dataset [17] contains the chemical reactions extracted from
United States patents published between 1976 and 2016. However,
this dataset contains many duplicate reactions and erroneous infor-
mation. Thus, we often apply the following three high-quality sub-
sets in research: USPTO-50K [18] comprises 50K randomly selected
reactions from USPTO and assigned reaction types and atom-to-
atom mapping by the tool NameRxn [14]. USPTO-MIT, including
480K reactions, and USPTO-full, including 1M reactions, are pro-
posed in WLDN [6] and GLN [3], respectively, after removing dupli-
cates and erroneous reactions. However, none of the three datasets
have reaction condition information. Besides the USPTO series,
other chemical reaction datasets like Pistachio [15] are private and
thus cannot be accessed easily.

3 THE PROPOSED USPTO-LLM DATASET
3.1 Data Structure
Given LLM’s textual comprehension and re-organization capabil-
ities, we introduce an LLM-assisted chemical reaction extraction
method, transforming natural language-based chemical reaction

Wrong Order R1.R2.S1>E1.T1>M1 R1.R2>S1.E1.T1>M1

Missing Edges

Redundant Edges

R1.R2>P1 R1.R2>>M1

R1.R2>>S1.E1.T1>P1 R1.R2>S1.E1.T1>P1

Invalid Nodes R1.R2>S1.E1.T1>P1

Irrepairable R1.R2.S1.E1.T1

Substitute Node

Change Order

Add Edge

Delete Edge

2nd round Generation❌

R1.R2>S1.E1.T1>Y1

Figure 2: Illustrations of typical invalid HDGs and the rules
for repairing them.

descriptions to heterogeneous directed graphs (HDG). As illustrated
in Figure 1, an HDG consists of the following two components:

• Heterogeneous nodes: Reactants (𝑅), mixtures (𝑀), and
products (𝑃 ) are represented as molecular nodes, while
solvents (𝑆), catalysts (𝐶), temperatures (𝐸), and reaction
durations (𝑇 ) are represented as attribute-oriented nodes.

• Directed edges: Directed edges linking heterogeneous
nodes, with molecular nodes pointing only to attribute-
oriented nodes and vice versa.

3.2 Prompt Engineering
To standardize the extraction of HDGs, besides the patent docu-
ments of chemical reactions, we apply a structured prompt as the
input of LLM, which contains three parts:

• Part 1 corresponds to the definitions of an HDG’s nodes
and edges and their corresponding symbol notations.

• Part 2 contains four rules that LLM should followwhen gen-
erating an HDG: (1) A standardized output format should
be “𝑁𝑥 .𝑁𝑦>𝐴>𝑁 ”, where “.” segments multiple input molec-
ular nodes, “>” indicates directed edges, each molecular
node 𝑁 ∈ {𝑅,𝑀, 𝑃}, and each attribute-oriented node 𝐴
is formulated as “𝑆.𝐶.𝐸.𝑇 ”. (2) Each node occurs at most
once in an HDG. (3) The generated HDG should reflect the
correct division of reaction steps. (4) The post-processing
procedures should be excluded from each step.

• Part 3 contains five typical examples of chemical reaction
extraction to support the in-context learning of LLM [10].

3.3 Two-round Generation with Quality Control
Due to the hallucination issue of LLM, some generated HDGs may
violate the desired HDG structure. To balance data quality and
generation cost, we use a two-round generation strategy with a
feedback mechanism for quality control. In the first round, we
concatenate the structured prompt with reaction descriptions and
generate HDGs using LLM APIs. For those HDGs suffering invalid
nodes and incorrect edges, we repair them by editing nodes or edges
based on rules, as shown in Figure 2. The HDGs that can not be
repairedwill be regenerated by LLM, and the input of LLM combines
the initial prompt, the erroneous HDGs, and the corresponding
explanations for their invalidation.

The results in Table 1 verify the feasibility of the two-round
generation strategy. Specifically, we apply different LLMs to gen-
erate HDGs and record the valid rate of HDG generation (i.e., the
proportion of the valid HDGs in those generated by the LLMs). We
find that the second-round generation helps consistently improve

2
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LLM GPT4 0613 GPT4 1106 GPT4 0125 GPT3.5turbo-0125
1st-round 88.1% 84.4% 85.7% 52.2%
2nd-round 51.3% 30.8% 31.8% 35.7%
Two-round 88.3% 90.1% 90.3% 75.6%

Table 1: Comparisons on the valid rate of HDGs.

the valid rate across various LLMs. According to the results, we set
GPT4-0125-preview as the default LLM used in our method.

Finally, the molecules in the generated HDGs are replaced with
their canonical SMILES strings and then passed through RXNMap-
per [19], which not only generates atommappings for each reaction
but also serves as a final quality control step. Reactions for which
atom mappings cannot be created are filtered out. This process
results in a total of 247K information-enriched chemical reactions.

3.4 Data Statistics
As shown in Figure 3, USPTO-LLM includes information on reac-
tion step divisions compared to existing USPTO datasets, with 33.6%
of the reactions being multi-step reactions. It also exhibits a broader
distribution of reactant numbers, indicating its ability to capture a
wider variety of chemical reactions compared to USPTO-50K. Fig-
ure 3 also shows the distribution of four types of reaction conditions.
The top 10 catalysts and solvents in USPTO-LLM account for 81.3%
and 62.4% of all catalysts and solvents. The reaction temperature
and reaction duration are concentrated at room temperature (25◦C)
and 2 × 104 seconds respectively.

4 EXPERIMENT
4.1 Experiment Setup
We demonstrate the usefulness of USPTO-LLM in molecular ret-
rosynthesis tasks. We consider a graph-based modelHGAR [23]
and a Transformer-based sequential model [20], respectively. As
shown in Figure 4, HGAR is a hierarchical graph autoregressive
model leveraging atom-level and motif-level information to pre-
dict reactants, while Transformer generates the SMILES strings of
reactants directly given the SMILES strings of products.

To quantitatively analyze the impacts of USPTO-LLM on the
above models, we designed two experiments: 𝑖) training the mod-
els with vs. without reaction conditions on USPTO-LLM and 𝑖𝑖)
training the models on USPTO-50K only vs. pretraining on USPTO-
LLM and finetuning on USPTO-50K. The first experiment aims to
verify the necessity of reaction condition information. In this exper-
iment, we fuse the reaction condition information into the models
by adding the embeddings of reaction conditions to the embedding
of the product, i.e.,

𝑴𝑃 ← 𝑴𝑃 + 1𝑁
∑︁

𝐴∈{𝑆,𝐶,𝐸,𝑇 } Pooling(𝑴𝐴)⊤ . (1)

Here,𝑴𝑃 ∈ R𝑁×𝑑 represents the embedding matrix of a product 𝑃 ,
where 𝑁 is the number of graph nodes for HGAR (or the number
of tokens for Transformer) and 𝑑 is the dimension of embedding.
For each reaction condition, i.e., 𝐴 ∈ {𝑆,𝐶, 𝐸,𝑇 }, we first tokenize
it at the character level into an embedding matrix 𝑴𝐴 ∈ R𝐿𝐴×𝑑 ,
where 𝐿𝐴 denotes the number of characters in 𝐴, and then obtain
the mean-pooling of the embedding. Each model is trained for 70

Figure 3: The distributions of reaction steps, numbers of
reactants, top-10 catalysts, top-10 solvents, temperature and
reaction duration.

HGAR
Reaction
Center

Add Motif

COC(=O)c1ccc(F)cc1

Transformer

COC(=O)c1ccc(F)cc1BrCOC(=O)c1ccc(F)cc1 ?

Br 0.73
Cl 0.15
[EOS] 0.10
C 0.01
... 0.01

Figure 4: Illustrations of two retrosynthesis models.

epochs with a batch size of 64. The second experiment tests the
transferability of USPTO-LLM to USPTO-50K, in which each model
is pretrained and finetuned for 70 epochs with a batch size of 64.
For a fair comparison, the reaction types are not provided in the
experiments, and we evaluate each model’s performance using
top-𝑘 accuracy (𝑘 = 1, 3, 5, 10).

4.2 Experiments and Analysis
The results in Table 2 indicate that USPTO-LLM is a challenging
dataset for existing retrosynthesis models. In particular, USPTO-
50K only contains simple one-step reactions, and the molecules in
the dataset can be easily represented by 197 templates (i.e., typical
molecular motifs or substructures). On the contrary, USPTO-LLM
involves many complex multi-step reactions and contains 3,635
templates that follow a long-tailed distribution. As a result, due to
the complexity of reaction types and the diversity of templates, both
HGAR and Transformer suffer severe performance degradations
when training and testing on USPTO-LLM. Fortunately, introduc-
ing reaction conditions helps improve the models’ performance.
This result demonstrates the necessity of the reaction condition
information in molecular retrosynthesis tasks, which is considered
in USPTO-LLM but ignored by the other datasets.

3
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Pretraining Training or Testing Use Reaction HGAR Transformer
Fine-tuning Conditions Top-1 Top-3 Top-5 Top-10 Top-1 Top-3 Top-5 Top-10

— USPTO-LLM USPTO-LLM No 8.3 11.7 12.6 13.2 13.2 21.5 25.7 30.8
— USPTO-LLM USPTO-LLM Yes 10.1 13.0 13.5 13.9 15.3 23.5 27.4 32.2
— USPTO-50K USPTO-50K No 55.4 73.1 78.6 83.9 38.2 59.5 66.5 74.2
USPTO-LLM USPTO-50K USPTO-50K No 53.8 73.5 78.0 82.7 40.7 62.9 70.2 77.3

Table 2: The performance of different models under different settings.

R1
R2

R3

?S1 C1
E1T1

?
?

?
P1

S1 C1
E1T1

R1
R2

R3

? ?
??

P1

Reaction Prediction Retrosynthesis Condition Prediction

Figure 5: The HDG-based illustrations of predictive tasks.

When pretraining on USPTO-LLM, the performance of Trans-
former on USPTO-50K is improved across all top-𝑘 accuracy met-
rics, while HGAR suffers slight performance degradations on top-1,
top-5, and top-10 accuracy. This phenomenon is caused by the dif-
ference between the two modeling strategies. As aforementioned,
HGAR heavily relies on the leverage of molecular templates, but
the distribution of the templates in USPTO-LLM is very different
from that in USPTO-50K, which cannot be adapted well through
the “pretraining and fine-tuning” strategy. On the contrary, Trans-
former models and generates SMILES strings. For USPTO-50K and
USPTO-LLM, their vocabularies are overlapped by 97%, so that the
sequential model pretrained on USPTO-LLM can be easily adapted
to USPTO-50K and achieves encouraging performance.

5 CONCLUSION AND FUTUREWORK
We have proposed an LLM-assisted chemical reaction data extrac-
tion method and constructed an information-enriched USPTO-LLM
dataset accordingly. USPTO-LLM contains rich side information
such as reaction conditions and step divisions, allowing us to for-
mulate each chemical reaction as a heterogeneous directed graph.
Experiments have demonstrated that USPTO-LLM is a challeng-
ing chemical reaction dataset, which may help develop and test
cutting-edge reaction prediction models.

Note that, by forming chemical reactions as HDGs, we can unify
various reaction-related learning tasks in a graph-filling frame-
work. As illustrated in Figure 5, typical reaction prediction and
retrosynthesis tasks can be formulated as forward and backward
node prediction tasks, respectively. Moreover, because of the avail-
ability of reaction conditions, we can even propose new learning
tasks, e.g., reaction condition prediction. In the future, we plan to
further enlarge the dataset and develop benchmarks for various
challenging learning tasks relevant to chemical reactions based on
it, including but not limited to reaction prediction, retrosynthesis,
and reaction condition prediction.
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